
g++FAQ

g++FAQ ii

COLLABORATORS

TITLE :

g++FAQ

ACTION NAME DATE SIGNATURE

WRITTEN BY April 16, 2022

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

g++FAQ iii

Contents

1 g++FAQ 1

1.1 g++FAQ.guide . 1

1.2 g++FAQ.guide/new stuff . 4

1.3 g++FAQ.guide/version 2.7 . 4

1.4 g++FAQ.guide/version 2.6 . 5

1.5 g++FAQ.guide/libstdc++ . 6

1.6 g++FAQ.guide/getting g++ . 6

1.7 g++FAQ.guide/latest versions . 7

1.8 g++FAQ.guide/g++ for Unix . 7

1.9 g++FAQ.guide/g++ for HP . 9

1.10 g++FAQ.guide/g++ for Solaris 2.x . 9

1.11 g++FAQ.guide/g++ for other platforms . 10

1.12 g++FAQ.guide/1.x vs 2.x versions . 11

1.13 g++FAQ.guide/installation . 12

1.14 g++FAQ.guide/gcc-2 + g++-1 . 12

1.15 g++FAQ.guide/what else do I need? . 13

1.16 g++FAQ.guide/use GNU linker? . 13

1.17 g++FAQ.guide/Use GNU assembler? . 15

1.18 g++FAQ.guide/Use GNU C library? . 15

1.19 g++FAQ.guide/Global constructor problems . 15

1.20 g++FAQ.guide/Strange assembler errors . 16

1.21 g++FAQ.guide/Problems building libg++ on 386-486 . 17

1.22 g++FAQ.guide/Other problems building libg++ . 17

1.23 g++FAQ.guide/More size_t problems . 17

1.24 g++FAQ.guide/Rebuild libg++? . 18

1.25 g++FAQ.guide/User Problems . 18

1.26 g++FAQ.guide/2.5.x changes in overloading . 20

1.27 g++FAQ.guide/Demangler . 20

1.28 g++FAQ.guide/etags for C++ . 20

1.29 g++FAQ.guide/static data members . 21

g++FAQ iv

1.30 g++FAQ.guide/placement new syntax . 21

1.31 g++FAQ.guide/overloaded increment . 22

1.32 g++FAQ.guide/internal compiler error . 22

1.33 g++FAQ.guide/bug reports . 22

1.34 g++FAQ.guide/porting to g++ . 23

1.35 g++FAQ.guide/name mangling . 25

1.36 g++FAQ.guide/problems linking with other libraries . 25

1.37 g++FAQ.guide/documentation . 25

1.38 g++FAQ.guide/templates . 26

1.39 g++FAQ.guide/undefined templates . 28

1.40 g++FAQ.guide/redundant templates . 29

1.41 g++FAQ.guide/Standard Template Library . 29

1.42 g++FAQ.guide/agreement with standards . 29

1.43 g++FAQ.guide/compiling standard libraries . 30

1.44 g++FAQ.guide/debugging on SVR4 systems . 31

1.45 g++FAQ.guide/X11 conflicts with libg++ . 31

1.46 g++FAQ.guide/assignment to streams . 32

1.47 g++FAQ.guide/legalities . 32

1.48 g++FAQ.guide/index . 34

g++FAQ 1 / 41

Chapter 1

g++FAQ

1.1 g++FAQ.guide

Preface

This is a list of frequently asked questions (FAQ) for g++ users;
thanks to all those who sent suggestions for improvements. Thanks to
Marcus Speh for doing the index.

Please send updates and corrections to the FAQ to
‘jbuck@synopsys.com’. Please do *not* use me as a resource to get your
questions answered; that’s what gnu.g++.help is for and I don’t have
the time to support the net’s use of g++.

Many FAQs, including this one, are available on the archive site
rtfm.mit.edu, in the directory ‘pub/usenet/news.answers’. This FAQ may
be found in the subdirectory g++-FAQ.

This FAQ is intended to supplement, not replace, Marshall Cline’s
excellent FAQ for the C++ language and for the newsgroup comp.lang.c++.
Especially if g++ is the first C++ compiler you’ve ever used, the
question "How do I do <X> with g++?" is probably really "How do I do
<X> in C++?". The C++ FAQ is not on rtfm.mit.edu for some reason; you
can find it on sun.soe.clarkson.edu in ‘/pub/C++’.

new stuff
The latest poop

getting g++
Obtaining Source Code

installation
Installation Issues and Problems

User Problems
User Problems

legalities

g++FAQ 2 / 41

What are the rules for shipping code built with g++ and ←↩
libg++?

index
Concept Index

-- The Detailed Node Listing --

Obtaining Source Code

latest versions
What is the latest version of gcc, g++, and libg++?

g++ for Unix
How do I get a copy of g++ for Unix?

g++ for HP
Getting gcc/g++ for the HP Precision Architecture

g++ for Solaris 2.x
Getting gcc/g++ binaries for Solaris 2.x

g++ for other platforms
How do I get a copy of g++ for (some other platform)?

1.x vs 2.x versions
But I can only find g++-1.42!

Installation Issues and Problems

gcc-2 + g++-1
I can’t build g++ 1.x.y with gcc-2.x.y!

what else do I need?
OK, I’ve obtained gcc; what else do I need?

use GNU linker?
Should I use the GNU linker, or should I use "collect"?

Use GNU assembler?
Should I use the GNU assembler, or my vendor’s assembler?

Use GNU C library?
Should I use the GNU C library?

Global constructor problems
Global constructors aren’t being called

Strange assembler errors
Strange assembler errors when linking C++ programs

Problems building libg++ on 386-486

Other problems building libg++

g++FAQ 3 / 41

Rebuild libg++?
Do I need to rebuild libg++ to go with my new g++?

User Problems

2.5.x changes in overloading
Changes in function overloading

Demangler
Where can I find a demangler?

etags for C++
Where can I find a version of etags for C++?

static data members
Linker reports undefined symbols for static data members

placement new syntax
g++ won’t accept the placement new syntax.

overloaded increment
‘operator++’ and ‘operator--’

internal compiler error
What does "internal compiler error" mean?

bug reports
I think I have found a bug in g++.

porting to g++
Porting programs from other compilers to g++

name mangling
Why does g++ mangle names differently from other C++ compilers ←↩

?

problems linking with other libraries
Why can’t g++ code link with code from other C++ compilers?

documentation
What documentation exists for g++ 2.x?

templates
Problems with the template implementation

undefined templates
I get undefined symbols when using templates

redundant templates
I get multiply defined symbols when using templates

Standard Template Library
Does g++ support the Standard Template Library?

agreement with standards

g++FAQ 4 / 41

What are the differences between g++ and the ARM specification ←↩
of C++?

compiling standard libraries
Will g++ compile InterViews? The NIH class library?

debugging on SVR4 systems
Debugging on SVR4 systems

X11 conflicts with libg++
Conflict over meaning of String

assignment to streams
Why can’t I assign one stream to another?

1.2 g++FAQ.guide/new stuff

The latest poop

This section is intended to describe more recent changes to g++,
libg++, and such. Some things in this section will eventually move
elsewhere.

Version 2.7.0 is expected Real Soon Now. Don’t ask exactly when,
since I don’t know, but it’s close.

version 2.7
What to expect in version 2.7

version 2.6
What’s new in version 2.6.x of gcc/g++

libstdc++
The GNU Standard C++ Library

1.3 g++FAQ.guide/version 2.7

What to expect in version 2.7
=============================

gcc-2.7.0 will be a major release, with major support for exceptions,
run time type identification, and many bug fixes. This section will
probably grow next time around when I know more.

In the meantime I’ll put in one soon-to-be-a-FAQ, so folks can get a

g++FAQ 5 / 41

start on fixing their code:

gcc-2.7.0 implements the new ANSI/ISO rule on the scope of variables
declared in for loops.

for (int i = 1; i <= 10; i++) {
// do something here

}
foo(i);

In the above example, most existing C++ compilers would pass the
value 11 to the function ‘foo’. In gcc 2.7 and in the ANSI/ISO working
paper, the scope of ‘i’ is only the for loop body, so this is an error.
So that old code can be compiled, the new gcc has a flag
‘-fno-for-scope’ that causes the old rule to be used.

1.4 g++FAQ.guide/version 2.6

What’s new in version 2.6.0 of gcc/g++
======================================

The long-awaited version 2.6.0 of gcc/g++ (along with a matching
version of libg++) have now been released, together with three bug fix
releases, 2.6.1 through 2.6.3 (the latest version). This represents a
great deal of work on the part of the g++ maintainers to fix
outstanding bugs and move the compiler closer to the current ANSI/ISO
standards committee’s working paper, including supporting some of the
new features that have been added to the language. For example:

* built-in boolean type ‘bool’, with constants ‘true’ and ‘false’
(this will break code that uses these keywords as variable names).

* overloaded operator for array new and delete (operator new [] and
delete []).

* ANSI/ISO working paper-conforming lifetime of temporaries
(temporaries now live longer than they used to).

* explicit instantiation of templates (‘template class A<int>;’),
along with an option (‘-fno-implicit-templates’) to disable
emission of implicitly instantiated templates, obsoletes
‘-fexternal-templates’.

* static member constants (‘static const int foo = 4;’ within the
class declaration).

* There is an *alpha* version of exception handling that currently
works *only* on Sparcs running SunOS 4.1.x. Full exception
support will still take a while longer.

* An undocumented feature: 2.6.x parses the new cast expressions
containing the keywords ‘static_cast’, ‘reinterpret_cast’,
‘const_cast’, and ‘dynamic_cast’. For the time being, the first
three are silently turned into normal casts (in my opinion, a

g++FAQ 6 / 41

warning should be given that they aren’t completely supported).
‘dynamic_cast’ will yield a "sorry, not yet implemented" message,
since it requires run-time type identification support to
implement.

Also there have been many bug fixes, in nested types, access control,
pointers to member functions, the parser, templates, overload
resolution, etc, etc. Finally, ‘.cpp’ is now supported as a C++ file
extension.

Note that g++ 2.6.x won’t compile libg++ 2.5.3 (due to a bug in that
version of libg++); you’ll need libg++ 2.6 or later.

Despite what the ‘NEWS’ file in the distribution says, the original
Fresco distributed with X11R6 did not quite compile, because of use of
"true" and "false" that conflicts with the new bool type. This problem
was fixed in public patch #5 to X11R6, so Fresco should now build fine
with g++ 2.6 provided that you have installed this patch.

1.5 g++FAQ.guide/libstdc++

The GNU Standard C++ Library
============================

The GNU Standard C++ Library (also called the "GNU ANSI C++ Library"
in places in the code) is not libg++, though it is included in the
libg++ distribution. Rather, it will contain classes and functions
required by the ANSI/ISO standard. The copyright conditions are the
same as those for for the iostreams classes; the LGPL is not used. See
See

legalities
.

This library, libstdc++, is in the libg++ distribution in versions
2.6.2 and later. It requires at least gcc 2.6.3 to build. It contains
a hacked-up version of HP’s implementation of the Standard Template
Library (see See

Standard Template Library
).

1.6 g++FAQ.guide/getting g++

Obtaining Source Code

latest versions
What is the latest version of gcc, g++, and libg++?

g++FAQ 7 / 41

g++ for Unix
How do I get a copy of g++ for Unix?

g++ for HP
Getting gcc/g++ for the HP Precision Architecture

g++ for Solaris 2.x
Getting gcc/g++ binaries for Solaris 2.x

g++ for other platforms
How do I get a copy of g++ for (some other platform)?

1.x vs 2.x versions
But I can only find g++-1.42!

1.7 g++FAQ.guide/latest versions

What is the latest version of gcc, g++, and libg++?
===

The latest "2.x" version of gcc/g++ is 2.6.3, released December 1,
1994. The latest version of libg++ is 2.6.2, released December 16,
1994. Don’t use 2.5.x, with x less than 5, for C++ code; there were
some serious bugs that didn’t have easy workarounds. 2.5.8 is the most
solid 2.5.x release.

For some non-Unix platforms, the latest port of gcc may be an earlier
version (2.5.8, say). You’ll need to use a version of libg++ that has
the same first two digits as the compiler version, e.g. use libg++
2.5.x (for the latest x you can find) with gcc version 2.5.8.

The latest "1.x" version of gcc is 1.42, and the latest "1.x"
version of g++ is 1.42.0. While gcc 1.42 is quite usable for C
programs, I recommend against using g++ 1.x except in special
circumstances.

1.8 g++FAQ.guide/g++ for Unix

How do I get a copy of g++ for Unix?
====================================

First, you may already have it if you have gcc for your platform;
g++ and gcc are combined now (as of gcc version 2.0).

You can get g++ from a friend who has a copy, by anonymous FTP or
UUCP, or by ordering a tape or CD-ROM from the Free Software Foundation.

The Free Software Foundation is a nonprofit organization that

g++FAQ 8 / 41

distributes software and manuals to raise funds for more GNU
development. Getting your copy from the FSF contributes directly to
paying staff to develop GNU software. CD-ROMs cost $400 if an
organization is buying, or $100 if an individual is buying. Tapes cost
around $200 depending on media type. I recommend asking for version 2,
not version 1, of g++.

For more information about ordering from the FSF, contact
gnu@prep.ai.mit.edu, phone (617) 876-3296 or anonymous ftp file
‘/pub/gnu/GNUinfo/ORDERS’ from prep.ai.mit.edu or one of the sites
listed below.

Here is a list of anonymous FTP archive sites for GNU software.

ASIA: ftp.cs.titech.ac.jp, utsun.s.u-tokyo.ac.jp:/ftpsync/prep,
cair.kaist.ac.kr:/pub/gnu, ftp.nectec.or.th:/pub/mirrors/gnu

AUSTRALIA: archie.oz.au:/gnu (archie.oz or archie.oz.au for ACSnet)

AFRICA: ftp.sun.ac.za:/pub/gnu

MIDDLE-EAST: ftp.technion.ac.il:/pub/unsupported/gnu

EUROPE: irisa.irisa.fr:/pub/gnu, ftp.univ-lyon1.fr:pub/gnu,
ftp.mcc.ac.uk, unix.hensa.ac.uk:/pub/uunet/systems/gnu, ftp.denet.dk,
src.doc.ic.ac.uk:/gnu, ftp.eunet.ch, nic.switch.ch:/mirror/gnu,
ftp.informatik.rwth-aachen.de:/pub/gnu, ftp.informatik.tu-muenchen.de,
ftp.win.tue.nl:/pub/gnu, ftp.funet.fi:/pub/gnu, ftp.stacken.kth.se,
isy.liu.se, ftp.luth.se:/pub/unix/gnu, ftp.sunet.se:/pub/gnu,
archive.eu.net

SOUTH AMERICA: ftp.unicamp.br:/pub/gnu

WESTERN CANADA: ftp.cs.ubc.ca:/mirror2/gnu

USA: wuarchive.wustl.edu:/systems/gnu, labrea.stanford.edu,
ftp.digex.net:/pub/gnu, ftp.kpc.com:/pub/mirror/gnu,
f.ms.uky.edu:/pub3/gnu, jaguar.utah.edu:/gnustuff,
ftp.hawaii.edu:/mirrors/gnu, vixen.cso.uiuc.edu:/gnu,
mrcnext.cso.uiuc.edu:/pub/gnu, ftp.cs.columbia.edu:/archives/gnu/prep,
col.hp.com:/mirrors/gnu, gatekeeper.dec.com:/pub/GNU,
ftp.uu.net:/systems/gnu

The "official site" is prep.ai.mit.edu, but your transfer will
probably go faster if you use one of the above machines.

Most GNU utilities are compressed with "gzip", the GNU compression
utility. All GNU archive sites should have a copy of this program,
which you will need to uncompress the distributions.

UUNET customers can get GNU sources from UUNET via UUCP. UUCP-only
sites can get GNU sources by "anonymous UUCP" from site "osu-cis" at
Ohio State University. You pay for the long-distance call to OSU; the
price isn’t too bad on weekends at 9600 bps. Send mail to
uucp@cis.ohio-state.edu or osu-cis!uucp for more information.

OSU lines are often busy. If you’re in the USA, and are willing to

g++FAQ 9 / 41

spend more money, you can get sources via UUCP from UUNET using their
900 number: 1-900-GOT-SRCS (900 numbers don’t work internationally).
You will be billed $0.50/minute by your phone company.

Don’t forget to retrieve libg++ as well!

1.9 g++FAQ.guide/g++ for HP

Getting gcc/g++ for the HP Precision Architecture
===

If you use the HP Precision Architecture (HP-9000/7xx and
HP-9000/8xx) and you want to use debugging, you’ll need to use the GNU
assembler, GAS (version 2.3 or later). If you build from source, you
must tell the configure program that you are using GAS or you won’t get
debugging support. A non-standard debug format is used, since until
recently HP considered their debug format a trade secret. Thanks to
the work of lots of good folks both inside and outside HP, the company
has seen the error of its ways and has now released the required
information. The team at the University of Utah that did the gcc port
now has code that understands the native HP format.

Some enhancements for the HP that haven’t been integrated back into
the official GCC are available from the University of Utah, site
jaguar.cs.utah.edu. You can retrieve sources and prebuilt binaries for
GCC (2.6.3.u6), GDB (4.13.u4), binutils (2.5.2.u4: this includes GAS),
and libg++ (2.6.2.u2); see the directory ‘/dist’.

The libg++ version is actually the same as the FSF 2.6. The Utah
version of GDB can now understand both the GCC and HP C compiler debug
formats, so it is no longer necessary to have two different GDB
versions.

I recommend that HP users use the Utah versions of the tools (see
above), though at this point the standard FSF versions will work well.

HP GNU users can also find useful stuff on the site geod.emr.ca in
the ‘/pub/GNU-HP’ directory.

1.10 g++FAQ.guide/g++ for Solaris 2.x

Getting gcc/g++ binaries for Solaris 2.x
==

"Sun took the C compiler out of Solaris 2.x. Am I stuck?"

No; prep.ai.mit.edu and its mirror sites provide GCC binaries for
Solaris. As a rule, these binaries are not updated as often as the
sources are, so if you want the very latest version of gcc/g++, you may
need to grab and install binaries for an older version and use it to

g++FAQ 10 / 41

bootstrap the latest version from source.

The latest gcc binaries on prep.ai.mit.edu and its mirror sites are
for version 2.5.6 for Solaris on the Sparc, and version 2.4.5 for
Solaris on Intel 386/486 machines. There are also binaries for "gzip",
the GNU compression utility, which you’ll need for uncompressing the
binary distribution. On any GNU archive site, look in subdirectories
‘i486-sun-solaris2’ or ‘sparc-sun-solaris2’.

The ftp directory /pub/GNU on site camus.quintus.com contains various
GNU and freeware programs for Solaris2.X running on the sparc. These are
packaged to enable installation using the Solaris "pkgadd" utility.
These include GNU emacs 19.19, gcc (and g++) 2.5.8, Perl 4.036, and
others.

1.11 g++FAQ.guide/g++ for other platforms

How do I get a copy of g++ for (some other platform)?
===

The standard gcc/g++ distribution includes VMS support. Since the
FSF people don’t use VMS, it’s likely to be somewhat less solid than
the Unix version. Precompiled copies of g++ and libg++ in
VMS-installable form are available by FTP from mango.rsmas.miami.edu.
See also the site ftp.stacken.kth.se (in Sweden), directory
/pub/GNU-VMS/contrib, which has gcc-2.5.8 and libg++-2.5.3.

There are two different versions of gcc/g++ for MS-DOS: EMX and
DJGPP. EMX also works for OS/2 and is described later. DJGPP is DJ
Delorie’s port. It can be found on many FTP archive sites; its "home"
is on oak.oakland.edu, directory ‘~ftp/pub/msdos/djgpp’.

The latest version of DJGPP is 1.12.maint1. This version runs under
Windows 3.x. It includes a port of gcc 2.6.0, plus support software.

FSF sells floppies with DJGPP on them; see above for ordering
software from the FSF.

A new Usenet group, ‘comp.os.msdos.djgpp’, has recently been created.

For information on Amiga ports of gcc/g++, retrieve the file
‘/pub/gnu/MicrosPorts/Amiga’ from prep.ai.mit.edu, or write to Markus
M. Wild <wild@nessie.cs.id.ethz.ch>, who I hope won’t be too upset that
I mentioned his name here.

A port of gcc to the Atari ST can be found on the site
"atari.archive.umich.edu", under ‘/atari/Gnustuff/Tos’, along with many
other GNU programs. This version is usually the same as the latest FSF
release. See the "Software FAQ" for the Usenet group
"comp.sys.atari.st" for more information.

There are two different ports of gcc to OS/2, the so-called EMX port
(which also runs on MS-DOS), and a port called "gcc/2". The EMX port’s
C library attempts to provide a Unix-like environment; gcc/2 uses a

g++FAQ 11 / 41

rather buggy port of the BSD libc. For more information ask around on
"comp.os.os2.programmer.misc".

The EMX port is available by FTP from

ftp.uni-stuttgart.de(129.69.1.12) in /pub/systems/os2/emx-0.8h
src.doc.ic.ac.uk(146.169.2.1) in /pub/packages/os2/2_x/unix/gnu/emx08h
ftp.informatik.tu-muenchen.de(131.159.0.198) in

/pub/comp/os/os2/devtools/emx+gcc

gcc/2, together with other GNUware for OS/2, can be obtained by FTP
from

ftp-os2.cdrom.com(192.153.46.2) in /pub/os2/2_x/unix/gnu
ftp-os2.nmsu.edu (128.123.35.151) in /pub/os2/2_x/unix/gnu
luga.latrobe.edu.au (131.172.2.2) in /pub/os2/2_x/unix/gnu

The current maintainer of the gcc/2 port is Colin Jensen (Michael
Johnson did the original port). His address is cjensen@netcom.com.

Eberhard Mattes did the EMX port. His address is
mattes@azu.informatik.uni-stuttgart.de.

I’m looking for more information on gcc/g++ support on the Apple
Macintosh. Until recently, this FAQ did not provide such information,
but FSF is no longer boycotting Apple as the League for Programming
Freedom boycott has been dropped.

Mike White (cons116@twain.oit.umass.edu) says: "Versions 1.37.1 and
2.3.3 of gcc were ported by Stan Shebs and are available at
ftp.cygnus.com under /pub/shebs. They are both interfaced to MPW.
Shebs is apparently working on a cross compiler of 2.6.3 to create Mac
apps from Unix boxes."

I don’t know anything about more recent versions.

1.12 g++FAQ.guide/1.x vs 2.x versions

But I can only find g++-1.42!
=============================

"I keep hearing people talking about g++ 2.5.8 (or some other number
starting with 2), but the latest version I can find is g++ 1.42. Where
is it?"

As of gcc 2.0, C, C++, and Objective-C as well are all combined into
a single distribution called gcc. If you get gcc you already have g++.
The standard installation procedure for any gcc version 2 compiler will
install the C++ compiler as well.

One could argue that we shouldn’t even refer to "g++-2.x.y" but it’s
a convention. It means "the C++ compiler included with gcc-2.x.y."

g++FAQ 12 / 41

1.13 g++FAQ.guide/installation

Installation Issues and Problems

gcc-2 + g++-1
I can’t build g++ 1.x.y with gcc-2.x.y!

what else do I need?
OK, I’ve obtained gcc; what else do I need?

use GNU linker?
Should I use the GNU linker, or should I use "collect"?

Use GNU assembler?
Should I use the GNU assembler, or my vendor’s assembler?

Use GNU C library?
Should I use the GNU C library?

Global constructor problems
Global constructors aren’t being called

Strange assembler errors
Strange assembler errors when linking C++ programs

Problems building libg++ on 386-486
Problems building libg++ on 386/486

Other problems building libg++
Other problems building libg++

More size_t problems
But I’m still having problems with size_t!

Rebuild libg++?
Rebuild libg++ to go with my new g++?

1.14 g++FAQ.guide/gcc-2 + g++-1

I can’t build g++ 1.x.y with gcc-2.x.y!
=======================================

"I obtained gcc-2.x.y and g++ 1.x.y and I’m trying to build it, but
I’m having major problems. What’s going on?"

If you wish to build g++-1.42, you must obtain gcc-1.42 first. The
installation instructions for g++ version 1 leave a lot to be desired,
unfortunately, and I would recommend that, unless you have a special
reason for needing the 1.x compiler, that C++ users use the latest

g++FAQ 13 / 41

g++-2.x version, as it is the version that is being actively maintained.

There is no template support in g++-1.x, and it is generally much
further away from the ANSI draft standard than g++-2.x is.

1.15 g++FAQ.guide/what else do I need?

OK, I’ve obtained gcc; what else do I need?
===

First off, you’ll want libg++ as you can do almost nothing without it
(unless you replace it with some other class library).

Second, depending on your platform, you may need "GAS", the GNU
assembler, or the GNU linker (see next question).

Finally, while it is not required, you’ll almost certainly want the
GNU debugger, gdb. The latest version is 4.13, released Aug. 14, 1994.
Other debuggers (like dbx, for example) will normally not be able to
understand at least some of the debug information produced by g++.

1.16 g++FAQ.guide/use GNU linker?

Should I use the GNU linker, or should I use "collect"?
===

First off, for novices: special measures must be taken with C++ to
arrange for the calling of constructors for global or static objects
before the execution of your program, and for the calling of
destructors at the end. (Exception: System VR3 and System VR4 linkers
support user-defined segments; g++ on these systems requires neither
the GNU linker nor collect. So if you have such a system, the answer
is that you don’t need either one).

If you have experience with AT&T’s "cfront", this function is
performed there by programs named "patch" or "munch". With GNU C++, it
is performed either by the GNU linker or by a program known as
"collect". The collect program is part of the gcc-2.x distribution;
you can obtain the GNU linker separately as part of the "binutils"
package. The latest version of binutils is 2.5.2, released November 2,
1994.

(To be technical, it’s "collect2"; there were originally several
alternative versions of collect, and this is the one that survived).

There are advantages and disadvantages to either choice.

Advantages of the GNU linker:

It’s faster than using collect - collect basically runs the standard

g++FAQ 14 / 41

Unix linker on your program twice, inserting some extra code after the
first pass to call the constructors. This is a sizable time penalty
for large programs. The GNU linker does not require this extra pass.

GNU ld reports undefined symbols using their true names, not the
mangled names.

If there are undefined symbols, GNU ld reports which object file(s)
refer to the undefined symbol(s).

As of binutils version 2.2, on systems that use the so-called "a.out"
debug format (e.g. Suns running SunOS 4.x), the GNU linker compresses
the debug symbol table considerably.

Advantages of collect:

If your native linker supports shared libraries, you can use shared
libraries with collect. This used to be a strong reason *not* to use
the GNU linker, but recent versions of GNU ld support linking with
shared libraries on many platforms, and creating shared libraries on a
few (such as Intel x86 systems that use ELF object format).

Note: using existing shared libraries (X and libc, for example) works
very nicely. Generating shared libraries from g++-compiled code is
another matter, generally requiring OS-dependent tricks if it is
possible at all.

However, as of libg++ 2.6.2, the libg++ distribution contains some
experimental patches to build libg++ as a shared library on some OSes.
Check the file ‘README.SHLIB’ from that distribution.

Ron Guilmette has written a set of patches for the g++ compiler that
will permit people using g++ on SVr4 systems (including Solaris) to
build ELF format shared libraries. These patches ensure that any file
scope static-storage objects within such libraries will be properly
initialized when the libraries are first attached to your running
process.

Ron’s patches have been integrated with the 2.6.1 release and the new
patches are available at ‘ftp.cygnus.com:pub/g++/gcc-2.6.1-shlib.gz’.
These patches will be part of the 2.7.0 release (I believe these
patches will also work if applied to 2.6.3).

The GNU linker has not been ported to as many platforms as g++ has,
so you may be forced to use collect.

If you use collect, you don’t need to get something extra and figure
out how to install it; the standard gcc installation procedure will do
it for you.

In conclusion, I don’t see a clear win for either alternative at this
point. Take your pick.

g++FAQ 15 / 41

1.17 g++FAQ.guide/Use GNU assembler?

Should I use the GNU assembler, or my vendor’s assembler?
===

This depends on your platform and your decision about the GNU
linker. For most platforms, you’ll need to use GAS if you use the GNU
linker. For some platforms, you have no choice; check the gcc
installation notes to see whether you must use GAS. But you can
usually use the vendor’s assembler if you don’t use the GNU linker.

The GNU assembler assembles faster than many native assemblers;
however, on many platforms it cannot support the local debugging format.

If you want to build shared libraries from gcc/g++ output and you
are on a Sun, you must *not* use GNU as, as it cannot do
position-independent code correctly yet.

On HPUX or IRIX, you must use GAS (and configure gcc with the
‘--with-gnu-as’ option) to debug your programs. GAS is strongly
recommended particularly on the HP platform because of limitations in
the HP assembler.

The GAS distribution has recently been merged with the binutils
distribution, so the GNU assembler and linker are now together in this
package (as of binutils version 2.5.1).

1.18 g++FAQ.guide/Use GNU C library?

Should I use the GNU C library?
===============================

At this point in time, no. The GNU C library is still very young,
and libg++ still conflicts with it in some places. Use your native C
library unless you know a lot about the gory details of libg++ and
gnu-libc. This will probably change in the future.

1.19 g++FAQ.guide/Global constructor problems

Global constructors aren’t being called
=======================================

"I’ve installed gcc and it almost works, but constructors and
destructors for global objects and objects at file scope aren’t being
called. What did I do wrong?"

It appears that you are running on a platform that requires you to
install either "collect2" or the GNU linker, and you have done neither.
For more information, see the section discussing the GNU linker (See

g++FAQ 16 / 41

use GNU linker?
).

On Solaris 2.x, you shouldn’t need a collect program and GNU ld
doesn’t run. If your global constructors aren’t being called, you may
need to install a patch, available from Sun, to fix your linker. The
number of the "jumbo patch" that applies is 101409-03. Thanks to
Russell Street (r.street@auckland.ac.nz) for this info.

It appears that on IRIX, the collect2 program is not being installed
by default during the installation process, though it is required; you
can install it manually by executing

make install-collect2

from the gcc source directory after installing the compiler. (I’m
not certain for which versions of gcc this problem occurs, and whether
it is still present).

1.20 g++FAQ.guide/Strange assembler errors

Strange assembler errors when linking C++ programs
==

"I’ve installed gcc and it seemed to go OK, but when I attempt to
link any C++ program, I’m getting strange errors from the assembler!
How can that be?"

The messages in question might look something like

as: "/usr/tmp/cca14605.s", line 8: error: statement syntax
as: "/usr/tmp/cca14605.s", line 14: error: statement syntax

(on a Sun, different on other platforms). The important thing is
that the errors come out at the link step, *not* when a C++ file is
being compiled.

Here’s what’s going on: the collect2 program uses the Unix "nm"
program to obtain a list of symbols for the global constructors and
destructors, and it builds a little assembly language module that will
permit them all to be called. If you’re seeing this symptom, you have
an old version of GNU nm somewhere on your path. This old version
prints out symbol names in a format that the collect2 program does not
expect, so bad assembly code is generated.

The solution is either to remove the old version of GNU nm from your
path (and that of everyone else who uses g++), or to install a newer
version (it is part of the GNU "binutils" package). Recent versions of
GNU nm do not have this problem.

g++FAQ 17 / 41

1.21 g++FAQ.guide/Problems building libg++ on 386-486

Problems building libg++ on 386/486
===================================

Attempts to install libg++ on 386 or 486 systems running ports of
SVR4 have problems because of bugs in debugging support on that
platform. Briefly, debugging does not currently work right yet for
C++. You should be able to build the library successfully by deleting
the ‘-g’ flag from the Makefiles (this should no longer be necessary
with gcc 2.4.x although debugging still doesn’t work).

See the section entitled "Debugging on SVR4 systems." (See

debugging on SVR4 systems
).

1.22 g++FAQ.guide/Other problems building libg++

Other problems building libg++
==============================

"I am having trouble building libg++. Help!"

On some platforms (for example, Ultrix), you may see errors
complaining about being unable to open dummy.o. On other platforms
(for example, SunOS), you may see problems having to do with the type
of size_t. The fix for these problems is to make libg++ by saying
"make CC=gcc". According to Per Bothner, it should no longer be
necessary to specify "CC=gcc" for libg++-2.3.1 or later.

"I built and installed libg++, but g++ can’t find it. Help!"

The string given to ‘configure’ that identifies your system must be
the same when you install libg++ as it was when you installed gcc.
Also, if you used the ‘--prefix’ option to install gcc somewhere other
than ‘/usr/local’, you must use the same value for ‘--prefix’ when
installing libg++, or else g++ will not be able to find libg++.

The toplevel Makefile in the libg++ 2.6.2 distribution is broken,
which along with a bug in g++ 2.6.3 causes problems linking programs
that use the libstdc++ complex classes. A patch for this is available
from ‘ftp.cygnus.com:pub/g++/libg++-2.6.2-fix.gz’.

1.23 g++FAQ.guide/More size_t problems

But I’m *still* having problems with ‘size_t’!
==

g++FAQ 18 / 41

"I did all that, and I’m *still* having problems with disagreeing
definitions of size_t, SIZE_TYPE, and the type of functions like
‘strlen’."

The problem may be that you have an old version of ‘_G_config.h’
lying around. As of libg++ version 2.4, ‘_G_config.h’, since it is
platform-specific, is inserted into a different directory; most include
files are in ‘$prefix/lib/g++-include’, but this file now lives in
‘$prefix/$arch/include’. If, after upgrading your libg++, you find that
there is an old copy of ‘_G_config.h’ left around, remove it, otherwise
g++ will find the old one first.

1.24 g++FAQ.guide/Rebuild libg++?

Do I need to rebuild libg++ to go with my new g++?
==

"After I upgraded g++ to the latest version, I’m seeing undefined
symbols."

or

"If I upgrade to a new version of g++, do I need to reinstall
libg++?"

As a rule, the first two digits of your g++ and libg++ should be the
same. Normally when you do an upgrade in the "minor version number"
(2.5.7 to 2.5.8, say) there isn’t a need to rebuild libg++, but there
have been a couple of exceptions in the past.

1.25 g++FAQ.guide/User Problems

User Problems

2.5.x changes in overloading
Changes in function overloading

Demangler
Where can I find a demangler?

etags for C++
Where can I find a version of etags for C++?

static data members
Linker reports undefined symbols for static data members

placement new syntax

g++FAQ 19 / 41

g++ won’t accept the placement new syntax.

overloaded increment
‘operator++’ and ‘operator--’

internal compiler error
What does "internal compiler error" mean?

bug reports
I think I have found a bug in g++.

porting to g++
Porting programs from other compilers to g++

name mangling
Why does g++ mangle names differently from other C++ compilers ←↩

?

problems linking with other libraries
Why can’t g++ code link with code from other C++ compilers?

documentation
What documentation exists for g++ 2.x?

templates
Problems with the template implementation

undefined templates
I get undefined symbols when using templates

redundant templates
I get multiply defined symbols when using templates

Standard Template Library
Does g++ support the Standard Template Library?

agreement with standards
What are the differences between g++ and the ARM specification ←↩

of C++?

compiling standard libraries
Will g++ compile InterViews? The NIH class library?

debugging on SVR4 systems
Debugging on SVR4 systems

X11 conflicts with libg++
Conflict over meaning of String

assignment to streams
Why can’t I assign one stream to another?

g++FAQ 20 / 41

1.26 g++FAQ.guide/2.5.x changes in overloading

gcc 2.5.x broke my code! Changes in function overloading
===

"I have a program that worked just fine with older g++ versions, but
as of version 2.5.x it doesn’t work anymore. Help!"

While it’s always possible that a new bug has been introduced into
the compiler, it’s also possible that you have been relying on bugs in
older versions of g++. For example, version 2.5.0 was the first
version of g++ to correctly implement the "hiding rule." That is, if
you have an overloaded function in a base class, and in a derived class
you redefine one of the names, the other names are effectively "hidden".

All the names from the baseclass need to be redefined in the derived
class. See section 13.1 of the ARM: "A function member of a derived
class is *not* in the same scope as a function member of the same name
in a base class".

Here’s an example that is handled incorrectly by g++ versions before
2.5.0 and correctly by newer versions:

class Base {
public:

void foo(int);
};

class Derived : public Base {
public:

void foo(double); // *note that Base::foo(int) is hidden*
};

main() {
Derived d;
d.foo(2); // *Derived::foo(double), not Base::foo(int), is called*

}

1.27 g++FAQ.guide/Demangler

Where can I find a demangler?
=============================

A g++-compatible demangler named ‘c++filt’ can be found in the
‘binutils’ distribution. This distribution (which also contains the
GNU linker) can be found at any GNU archive site.

1.28 g++FAQ.guide/etags for C++

Where can I find a version of etags for C++?
==

g++FAQ 21 / 41

The libg++ distribution contains a version of etags that works for
C++ code. Look in ‘libg++/utils’. It’s not built by default when you
install libg++, but you can cd to that directory and type

make etags

after you’ve installed libg++.

1.29 g++FAQ.guide/static data members

Linker reports undefined symbols for static data members
==

"g++ reports undefined symbols for all my static data members when I
link, even though the program works correctly for compiler XYZ. What’s
going on?"

The problem is almost certainly that you don’t give definitions for
your static data members. If you have

class Foo {
...
void method();
static int bar;

};

you have only declared that there is an int named Foo::bar and a
member function named Foo::method that is defined somewhere. You still
need to defined BOTH method() and bar in some source file. According
to the draft ANSI standard, you must supply an initializer, such as

int Foo::bar = 0;

in one (and only one) source file.

1.30 g++FAQ.guide/placement new syntax

g++ won’t accept the placement new syntax.
==

"I have a program that uses the "placement syntax" of operator new,
e.g.

new (somewhere) T;

and g++ won’t accept it."

You must have a very old version of g++; everything since 2.3.1
accepts placement new correctly. The only remaining problems were with

g++FAQ 22 / 41

declarators for pointers to functions:

new (void (*)(int)); // confuses gcc 2.3.2, some versions dump core (2.5.8)
new (a) (void (*)(int)); // ditto

Even these work correctly with 2.6.0. For older versions, these can
be worked around with a typedef:

typedef void (*fun)(int);
new fun;
new (a) fun;

1.31 g++FAQ.guide/overloaded increment

Overloaded increment (‘++’) and decrement (‘--’) operators
==

"g++ doesn’t seem to distinguish the prefix and postfix forms of
‘operator++’. What gives?"

Again, you must have a very old g++ to have this problem. The
solution is to upgrade your compiler; distinguishing the prefix and
postfix cases of ‘operator++’ and ‘operator--’ was first implemented in
g++ version 2.4.1.

For backward compatibility, if a class declares a prefix version of
‘operator++’ (or ‘operator--’) but no postfix version, and code
attempts to use ‘++’ (or ‘--’) as a postfix operator, g++ will use the
prefix version (unless the ‘-pedantic’ flag is set). This feature is
to avoid breaking old code.

1.32 g++FAQ.guide/internal compiler error

What does "Internal compiler error" mean?
===

It means that the compiler has detected a bug in itself.
Unfortunately, g++ still has many bugs. If you see this message,
please send in a complete bug report (see next section).

1.33 g++FAQ.guide/bug reports

I think I have found a bug in g++.
==================================

"I think I have found a bug in g++, but I’m not sure. How do I know,
and who should I tell?"

g++FAQ 23 / 41

First, see the excellent section on bugs and bug reports in the gcc
manual (which is included in the gcc distribution). As a short summary
of that section: if the compiler gets a fatal signal, for any input,
it’s a bug (newer versions of g++ will ask you to send in a bug report
when they detect an error in themselves). Same thing for producing
invalid assembly code.

When you report a bug, make sure to describe your platform (the type
of computer, and the version of the operating system it is running) and
the version of the compiler that you are running. See the output of the
command ‘g++ -v’ if you aren’t sure. Also provide enough code so that
the g++ maintainers can duplicate your bug. Remember that the
maintainers won’t have your header files; one possibility is to send
the output of the preprocessor (use ‘g++ -E’ to get this). This is
what a "complete bug report" means.

I will add some extra notes that are C++-specific, since the notes
from the gcc documentation are generally C-specific.

First, mail your bug report to "bug-g++@prep.ai.mit.edu". You may
also post to gnu.g++.bug, but it’s better to use mail, particularly if
you have any doubt as to whether your news software generates correct
reply addresses. Don’t mail C++ bugs to bug-gcc@prep.ai.mit.edu.

If your bug involves libg++ rather than the compiler, mail to
bug-lib-g++@prep.ai.mit.edu. If you’re not sure, choose one, and if you
guessed wrong, the maintainers will forward it to the other list.

Second, if your program does one thing, and you think it should do
something else, it is best to consult a good reference if in doubt. The
standard reference is "The Annotated C++ Reference Manual", by Ellis and
Stroustrup (copyright 1990, ISBN #0-201-51459-1). This is what they’re
talking about on the net when they refer to "the ARM".

The reference manual, without annotations, also appears in
Stroustrup’s "The C++ Programming Language, Second Edition" (copyright
1991, ISBN #0-201-53992-6). Both books are published by Addison-Wesley.

The ANSI/ISO C++ standards committee have adopted some changes to the
C++ language since the publication of the original ARM, and newer
versions of g++ (2.5.x and later) support some of these changes, notably
the mutable keyword (added in 2.5.0) and the bool type (added in 2.6.0).
You can obtain an addendum to the ARM explaining these changes by FTP
from ftp.std.com in ‘/AW/stroustrup2e/new_iso.ps’.

Note that the behavior of (any version of) AT&T’s "cfront" compiler
is NOT the standard for the language.

1.34 g++FAQ.guide/porting to g++

Porting programs from other compilers to g++
==

g++FAQ 24 / 41

"I have a program that runs on <some other C++ compiler>, and I want
to get it running under g++. Is there anything I should watch out for?"

First, see the questions on placement new syntax and static data
members.

Secondly, if the porting problem relates to the resolution of
overloaded operators or functions, and you’re running g++ 2.5.x, you
might try the ‘-fansi-overloading’ switch. This switch is obsolete in
2.6.0 or later, since the ‘-fansi-overloading’ code is now the default.
This switch enables new code that attempts to match the ARM
specification of overloaded argument resolution better.

There are two other reasons why a program that worked under one
compiler might fail under another: your program may depend on the order
of evaluation of side effects in an expression, or it may depend on the
lifetime of a temporary (you may be assuming that a temporary object
"lives" longer than the standard guarantees). As an example of the
first:

void func(int,int);

int i = 3;
func(i++,i++);

Novice programmers think that the increments will be evaluated in
strict left-to-right order. Neither C nor C++ guarantees this; the
second increment might happen first, for example. func might get 3,4,
or it might get 4,3.

The second problem often happens with classes like the libg++ String
class. Let’s say I have

String func1();
void func2(const char*);

and I say

func2(func1());

because I know that class String has an "operator const char*". So
what really happens is

func2(func1().convert());

where I’m pretending I have a convert() method that is the same as
the cast. This is unsafe in g++ versions before 2.6.0, because the
temporary String object may be deleted after its last use (the call to
the conversion function), leaving the pointer pointing to garbage, so by
the time func2 is called, it gets an invalid argument.

Both the cfront and the old g++ behaviors are legal according to the
ARM, but the powers that be have decided that compiler writers were
given too much freedom here.

The ANSI C++ committee has now come to a resolution of the lifetime
of temporaries problem: they specify that temporaries should be deleted

g++FAQ 25 / 41

at end-of-statement (and at a couple of other points). This means that
g++ versions before 2.6.0 now delete temporaries too early, and cfront
deletes temporaries too late. As of version 2.6.0, g++ does things
according to the new standard.

For now, the safe way to write such code is to give the temporary a
name, which forces it to live until the end of the scope of the name.
For example:

String& tmp = func1();
func2(tmp);

Finally, like all compilers (but especially C++ compilers, it seems),
g++ has bugs, and you may have tweaked one. If so, please file a bug
report (after checking the above issues).

1.35 g++FAQ.guide/name mangling

Why does g++ mangle names differently from other C++ compilers?
===

See the answer to the next question.

1.36 g++FAQ.guide/problems linking with other libraries

Why can’t g++ code link with code from other C++ compilers?
===

"Why can’t I link g++-compiled programs against libraries compiled by
some other C++ compiler?"

Some people think that, if only the FSF and Cygnus Support folks
would stop being stubborn and mangle names the same way that, say,
cfront does, then any g++-compiled program would link successfully
against any cfront-compiled library and vice versa. Name mangling is
the least of the problems. Compilers differ as to how objects are laid
out, how multiple inheritance is implemented, how virtual function
calls are handled, and so on, so if the name mangling were made the
same, your programs would link against libraries provided from other
compilers but then crash when run. For this reason, the ARM

encourages compiler writers to make their name mangling different
from that of other compilers for the same platform. Incompatible
libraries are then detected at link time, rather than at run time.

1.37 g++FAQ.guide/documentation

g++FAQ 26 / 41

What documentation exists for g++ 2.x?
======================================

Relatively little. While the gcc manual that comes with the
distribution has some coverage of the C++ part of the compiler, it
focuses mainly on the C compiler (though the information on the "back
end" pertains to C++ as well). Still, there is useful information on
the command line options and the #pragma interface and #pragma
implementation directives in the manual, and there is a useful section
on template instantiation in the 2.6 version. There is a Unix-style
manual entry, "g++.1", in the gcc-2.x distribution; the information
here is a subset of what is in the manual.

You can buy a nicely printed and bound copy of this manual from the
FSF; see above for ordering information.

For versions 2.6.2 and later, the gcc/g++ distribution contains the
gcc manual in PostScript. Also, Postscript versions of GNU
documentation in U.S. letter format are available by anonymous FTP to
primus.com in /pub/gnu-ps. The same, in A4 format, are on
liasun3.epfl.ch in /pub/gnu/ps-doc.

A draft of a document describing the g++ internals appears in the gcc
distribution (called g++int.texi); it is still incomplete.

1.38 g++FAQ.guide/templates

Problems with the template implementation
===

The template implementation is still new. The implementation in
2.5.x represents a considerable improvement over that of previous
releases, but it has a long way to go. This continues to improve from
release to release.

g++ does not implement a separate pass to instantiate template
functions and classes at this point; for this reason, it will not work,
for the most part, to declare your template functions in one file and
define them in another. The compiler will need to see the entire
definition of the function, and will generate a static copy of the
function in each file in which it is used.

For version 2.6.0, however, a new switch ‘-fno-implicit-templates’
was added; with this switch, templates are expanded only under user
control. I recommend that all g++ users that use templates read the
section "Template Instantiation" in the gcc manual (version 2.6.x and
newer). g++ now supports explicit template expansion using the syntax
from the latest C++ working paper:

template class A<int>;
template ostream& operator << (ostream&, const A<int>&);

As of version 2.6.3, there are still a few limitations in the

g++FAQ 27 / 41

template implementation besides the above (thanks to Jason Merrill for
this info):

1. Static data member templates are not supported. You can work
around this by explicitly declaring the static variable for each
template specialization:

template <class T> struct A {
static T t;

};

template <class T> T A<T>::t = 0; // gets bogus error
int A<int>::t = 0; // OK (workaround)

2. Template member names are not available when defining member
function templates.

template <class T> struct A {
typedef T foo;
void f (foo);
void g (foo arg) { ... }; // this works

};

template <class T> void A<T>::f (foo) { } // gets bogus error

3. Templates are instantiated using the parser. This results in two
problems:

a) Class templates are instantiated in some situations where such
instantiation should not occur.

template <class T> class A { };
A<int> *aip = 0; // should not instantiate A<int> (but does)

b) Function templates cannot be inlined at the site of their
instantiation.

template <class T> inline T min (T a, T b) { return a < b ? a : b; }

void f () {
int i = min (1, 0); // not inlined

}

void g () {
int j = min (1, 0); // inlined

}

A workaround that works in version 2.6.1 and later is to specify

extern template int min (int, int);

before ‘f()’; this will force it to be instantiated (though not
emitted).

4. Member function templates are always instantiated when their
containing class is. This is wrong.

g++FAQ 28 / 41

1.39 g++FAQ.guide/undefined templates

I get undefined symbols when using templates
==

(Thanks to Jason Merrill for this section).

g++ does not automatically instantiate templates defined in other
files. Because of this, code written for cfront will often produce
undefined symbol errors when compiled with g++. You need to tell g++
which template instances you want, by explicitly instantiating them in
the file where they are defined. For instance, given the files

‘templates.h’:
template <class T>
class A {
public:

void f ();
T t;

};

template <class T> void g (T a);

‘templates.cc’:
#include "templates.h"

template <class T>
void A::f () { }

template <class T>
void g (T a) { }

main.cc:
#include "templates.h"

main ()
{

A<int> a;
a.f ();
g (a);

}

compiling everything with ‘g++ main.cc templates.cc’ will result in
undefined symbol errors for ‘A<int>::f ()’ and ‘g (A<int>)’. To fix
these errors, add the lines

template class A<int>;
template void g (A<int>);

to the bottom of ‘templates.cc’ and recompile.

g++FAQ 29 / 41

1.40 g++FAQ.guide/redundant templates

I get multiply defined symbols using templates
==

You may be running into a bug that was introduced in version 2.6.1
(and is still present in 2.6.3) that generated external linkage for
templates even when neither ‘-fexternal-templates’ nor
‘-fno-implicit-templates’ is specified. There is a patch for this
problem at ftp.cygnus.com:pub/g++/gcc-2.6.3-template-fix. I recommend
either applying the patch or using ‘-fno-implicit-templates’ together
with explicit template instantiation as described in previous sections.

1.41 g++FAQ.guide/Standard Template Library

Does g++ support the Standard Template Library?
===

From Per Bothner:

The Standard Template Library (STL) uses many of the extensions that
the ANSI/ISO committee has made to templates, and g++ doesn’t support
some of these yet. So if you grab HP’s free implementation of STL it
isn’t going to work. However, libg++-2.6.2 contains a hacked version
of STL, based on work by Carsten Bormann, which permits gcc-2.6.3 to
compile at least the containers. A full implementation is going to
need improved template support, which will take a while yet.

1.42 g++FAQ.guide/agreement with standards

What are the differences between g++ and the ARM specification of C++?
==

The chief thing missing from g++ that is in the ARM is exceptions.
There is an alpha version of exceptions in version 2.6.1 for SunOS4 on
the Sparc, but not for other platforms. Patches to g++ to enable
exception handling for the Intel x86 and RS/6000 platforms are
available from Mike Stump’s World Wide Web home page:
‘http://www.cygnus.com/~mrs/’.

Some features that the ANSI/ISO standardization committee has voted
in that don’t appear in the ARM are supported, notably the ‘mutable’
keyword, in version 2.5.x. 2.6.x adds support for the built-in boolean
type ‘bool’, with constants ‘true’ and ‘false’. The beginnings of
run-time type identification are present, so there are more reserved
words: ‘typeid’, ‘static_cast’, ‘reinterpret_cast’, ‘const_cast’, and
‘dynamic_cast’.

As with any beta-test compiler, there are bugs. You can help improve
the compiler by submitting detailed bug reports.

g++FAQ 30 / 41

One of the weakest areas of g++ other than templates is the
resolution of overloaded functions and operators in complex cases. The
usual symptom is that in a case where the ARM says that it is ambiguous
which function should be chosen, g++ chooses one (often the first one
declared). This is usually not a problem when porting C++ code from
other compilers to g++, but shows up as errors when code developed under
g++ is ported to other compilers.

As of 2.5.0, the overloading code has been rewritten. For now, you
must specify the option ‘-fansi-overloading’ to get the new code, since
there were some important users actually depending on g++’s incorrect
resolution of ambiguities. This switch should disappear in the future.
If a program that compiled under previous g++ versions now reports that
a use of an overloaded function is ambiguous, it is likely that the old
g++ was letting you write buggy code and the new one is detecting the
problem. If in doubt, consult the ARM.

[A full bug list would be very long indeed, so I won’t put one here.
I may add a list of frequently-reported bugs and "non-bugs" like the
static class members issue mentioned above].

1.43 g++FAQ.guide/compiling standard libraries

Will g++ compile InterViews? The NIH class library?
==

The NIH class library uses a non-portable, compiler-dependent hack
to initialize itself, which makes life difficult for g++ users. It
will not work without modification, and I don’t know what modifications
are required or whether anyone has done them successfully.

In short, it’s not going to happen any time soon (previous FAQs
referred to patches that a new NIHCL release would hopefully contain,
but this hasn’t happened).

[From Steinar Bang <steinarb@idt.unit.no>]

InterViews 3.1 compiles and runs with gcc-2.3.3 and libg++-2.3,
except that the "doc" application immediately dumps core when you try
to run it. There is also a small glitch with idraw.

There is a patch for InterViews 3.1 from Johan Garpendahl
<garp@isy.liu.se> available for FTP from site "ugle.unit.no". It is in
the file

‘/pub/X11/contrib/InterViews/g++/3.1-beta3-patch’.

This fixes two things: the Doc coredump, and the pattern menu of
idraw. Read the instructions at the start of the file.

I think that as of version 2.5.6, the standard g++ will compile the
standard 3.1 InterViews completely successfully. I’d appreciate a
confirmation.

g++FAQ 31 / 41

1.44 g++FAQ.guide/debugging on SVR4 systems

Debugging on SVR4 systems
=========================

"When I use the ‘-g’ flag on C++ code on a System V Release 4 system,
I get lots of undefined symbols at link time. Why? Help!"

Most systems based on System V Release 4 (except Solaris) encode
symbolic debugging information in a format known as ‘DWARF’.

Although the GNU C compiler already knows how to write out symbolic
debugging information in the DWARF format, the GNU C++ compiler does
not yet have this feature, nor is it likely to in the immediate future.

Ron Guilmette has done a great deal of work to try to get the GNU
C++ compiler to produce DWARF format symbolic debugging information
(for C++ code) but he gave up on the project because of a lack of
funding and/or interest from the g++ user community. If you have a
strong desire to see this project completed, contact Ron at
<rfg@netcom.com>.

In the meantime, you *can* get g++ debugging under SVR4 systems by
configuring gcc with the ‘--with-stabs’ option. This causes gcc to use
an alternate debugging format, one more like that used under SunOS4.
You won’t need to do anything special to GDB; it will always understand
the "stabs" format.

1.45 g++FAQ.guide/X11 conflicts with libg++

X11 conflicts with libg++ in definition of String
===

"X11 and Motif define String, and this conflicts with the String
class in libg++. How can I use both together?"

One possible method is the following:

#define String XString
#include <X11/Intrinsic.h>
/* include other X11 and Motif headers */
#undef String

and remember to use the correct ‘String’ or ‘XString’ when you
declare things later.

g++FAQ 32 / 41

1.46 g++FAQ.guide/assignment to streams

Why can’t I assign one stream to another?
===

[Thanks to Per Bothner and Jerry Schwarz for this section.]

Assigning one stream to another seems like a reasonable thing to do,
but it’s a bad idea. Usually, this comes up because people want to
assign to ‘cout’. This is poor style, especially for libraries, and is
contrary to good object-oriented design. (Libraries that write directly
to ‘cout’ are less flexible, modular, and object-oriented).

The iostream classes do not allow assigning to arbitrary streams,
because this can violate typing:

ifstream foo ("foo");
istrstream str(...);
foo = str;
foo->close (); /* Oops! Not defined for istrstream! */

The original cfront implementation of iostreams by Jerry Schwarz
allows you to assign to ‘cin’, ‘cout’, ‘cerr’, and ‘clog’, but this is
not part of the draft standard for iostreams and generally isn’t
considered a good idea, so standard-conforming code shouldn’t use this
technique.

The GNU implementation of iostream did not support assigning to
‘cin’, ‘cout’, ‘cerr’, and ‘clog’ for quite a while, but it now does,
for backward compatibility with cfront iostream (versions 2.6.1 and
later of libg++).

The ANSI/ISO C++ Working Paper does provide ways of changing the
streambuf associated with a stream. Assignment isn’t allowed; there is
an explicit named member that must be used.

However, it is not wise to do this, and the results are confusing.
For example: ‘fstream::rdbuf’ is supposed to return the *original*
filebuf, not the one you assigned. (This is not yet implemented in GNU
iostream.) This must be so because ‘fstream::rdbuf’ is defined to
return a ‘filebuf *’.

1.47 g++FAQ.guide/legalities

What are the rules for shipping code built with g++ and libg++?

"Is it is possible to distribute programs for profit that are created
with g++ and use the g++ libraries?"

I am not a lawyer, and this is not legal advice. In any case, I have
little interest in telling people how to violate the spirit of the GNU
licenses without violating the letter. This section tells you how to

g++FAQ 33 / 41

comply with the intention of the GNU licenses as best I understand them.

The FSF has no objection to your making money. Its only interest is
that source code to their programs, and libraries, and to modified
versions of their programs and libraries, is always available.

The short answer is that you do not need to release the source to
your program, but you can’t just ship a stripped executable either,
unless you use only the subset of libg++ that includes the iostreams
classes (see discussion below) or the new libstdc++ library (available
in libg++ 2.6.2 and later).

Compiling your code with a GNU compiler does not affect its
copyright; it is still yours. However, in order to ship code that
links in a GNU library such as libg++ there are certain rules you must
follow. The rules are described in the file COPYING.LIB that
accompanies gcc distributions; it is also included in the libg++
distribution. See that file for the exact rules. The agreement is
called the Library GNU Public License or LGPL. It is much "looser"
than the GNU Public License, or GPL, that covers must GNU programs.

Here’s the deal: let’s say that you use some version of libg++,
completely unchanged, in your software, and you want to ship only a
binary form of your code. You can do this, but there are several
special requirements. If you want to use libg++ but ship only object
code for your code, you have to ship source for libg++ (or ensure
somehow that your customer already has the source for the exact version
you are using), and ship your application in linkable form. You cannot
forbid your customer from reverse-engineering or extending your program
by exploiting its linkable form.

Furthermore, if you modify libg++ itself, you must provide source
for your modifications (making a derived class does not count as
modifying the library - that is "a work that uses the library").

For certain portions of libg++ that implement required parts of the
C++ language (such as iostreams), the FSF has loosened the copyright
requirement still more by adding the "special exception" clause, which
reads as follows:

As a special exception, if you link this library with files
compiled with GCC to produce an executable, this does not cause
the resulting executable to be covered by the GNU General Public
License. This exception does not however invalidate any other
reasons why the executable file might be covered by the GNU
General Public License.

If your only use of libg++ uses code with this exception, you may
ship stripped executables or license your executables under different
conditions without fear of violating an FSF copyright. It is the intent
of FSF and Cygnus that, as the other classes required by the ANSI/ISO
draft standard are developed, these will also be placed under this
"special exception" license. The code in the new libstdc++ library,
intended to implement standard classes as defined by ANSI/ISO, is also
licensed this way.

To avoid coming under the influence of the LGPL, you can link with

g++FAQ 34 / 41

‘-liostream’ rather than ‘-lg++’. You can also use ‘-lstdc++’ now that
it is available.

1.48 g++FAQ.guide/index

Concept Index

-fno-for-scope
version 2.7

-fno-implicit-templates
templates

-fansi-overloading
agreement with standards

-fansi-overloading
porting to g++

operator++
overloaded increment

operator-
overloaded increment

Amiga support
g++ for other platforms

ANSI draft standard
porting to g++

ANSI draft standard
gcc-2 + g++-1

Apple support
g++ for other platforms

Archive site for FAQ lists Top

ARM [Annotated C++ Ref Manual]
problems linking with other libraries

ARM [Annotated C++ Ref Manual]
bug reports

ARM [Annotated C++ Ref Manual]
agreement with standards

array new and delete
version 2.6

g++FAQ 35 / 41

Assembler
Use GNU assembler?

assignment to cout
assignment to streams

AT&T cfront
bug reports

AT&T cfront
use GNU linker?

Atari ST support
g++ for other platforms

bool type
version 2.6

Bug in g++, newly found
bug reports

C++, reference books
bug reports

Cfront-end
use GNU linker?

Classes, problems in porting
porting to g++

collect linker, advantages
use GNU linker?

collect program
Global constructor problems

collect program
use GNU linker?

Compiler differences
problems linking with other libraries

constructor problems on Solaris
Global constructor problems

Cygnus Support
problems linking with other libraries

declarations in for statements
version 2.7

Delorie’s gcc/g++
g++ for other platforms

demangler program
Demangler

g++FAQ 36 / 41

DJGPP
g++ for other platforms

EMX
g++ for other platforms

EMX port
g++ for other platforms

etags
etags for C++

exceptions
version 2.6

exceptions
agreement with standards

FAQ for C++ Top
FAQ for g++, latest version Top

for statements: declarations
version 2.7

FSF [Free Software Foundation]
legalities

FSF [Free Software Foundation]
g++ for Unix

FSF, contact <gnu@prep.ai.mit.edu>
g++ for Unix

g++ bug report
bug reports

g++ bugs
agreement with standards

g++, building
gcc-2 + g++-1

g++, documentation
documentation

g++, getting a copy
g++ for Unix

g++, ordering
g++ for Unix

g++, template support
gcc-2 + g++-1

g++, template support
templates

g++, version number

g++FAQ 37 / 41

1.x vs 2.x versions

gcc, version 2.3.3
compiling standard libraries

gcc/2
g++ for other platforms

gcc/g++ binaries for Solaris
g++ for Solaris 2.x

gcc/g++, version date
latest versions

global constructors
Global constructor problems

GNU binutils
use GNU linker?

GNU C library
Use GNU C library?

GNU g++ and gcc
g++ for Unix

GNU GAS
Use GNU assembler?

GNU GAS
g++ for HP

GNU GAS
what else do I need?

GNU GAS [assembler]
what else do I need?

GNU gcc, version
g++ for Unix

GNU gdb
what else do I need?

GNU gdb
g++ for HP

GNU ld
use GNU linker?

GNU linker
use GNU linker?

GNU linker, advantages
use GNU linker?

GNU linker, porting

g++FAQ 38 / 41

use GNU linker?

GNU nm program
Strange assembler errors

GNU [GNU’s not unix]
g++ for Unix

GNUware, anonymous FTP sites
g++ for Unix

GPL [GNU Public License]
legalities

gzip
g++ for Solaris 2.x

gzip
g++ for Unix

Hewlett-Packard
g++ for HP

hiding rule
2.5.x changes in overloading

HP Precision Architecture
g++ for HP

Incompatibilities between g++ versions
Rebuild libg++?

InterViews 3.1
compiling standard libraries

IRIX, installing collect
Global constructor problems

Joe Buck <jbuck@synopsys.com> Top

ld [GNU linker]
use GNU linker?

libg++
Use GNU C library?

libg++
g++ for Unix

libg++
what else do I need?

libg++ bug report
bug reports

libg++ on SunOS
Other problems building libg++

g++FAQ 39 / 41

libg++ on Ultrix
Other problems building libg++

libg++, modifying
legalities

libg++, shipping code
legalities

libg++, version 2.3
compiling standard libraries

Linker
use GNU linker?

Macintosh support
g++ for other platforms

Mangling names
name mangling

Mangling names
problems linking with other libraries

Manual, for gcc
bug reports

Marshall Cline [FAQ for comp.lang.c++] Top

MS-DOS support
g++ for other platforms

mutable
agreement with standards

NIH class library
compiling standard libraries

NIHCL with g++
compiling standard libraries

nm program
Strange assembler errors

Objective-C
1.x vs 2.x versions

Order of evaluation, problems in porting
porting to g++

OS/2 support
g++ for other platforms

patch for libg++-2.6.2
Other problems building libg++

Porting to g++
porting to g++

g++FAQ 40 / 41

Problems in porting, class
porting to g++

Problems in porting, scope
porting to g++

rtfm.mit.edu Top

Scope, problems in porting
porting to g++

Shared libraries
use GNU linker?

Shared libraries, Solaris and SVR4
use GNU linker?

Shared version of libg++
use GNU linker?

Shipping rules
legalities

Solaris
g++ for Solaris 2.x

Solaris pkgadd utility
g++ for Solaris 2.x

Solaris, constructor problems
Global constructor problems

Source code
getting g++

special copying conditions for iostreams
legalities

Standard Template Library
Standard Template Library

Static data members
static data members

STL
Standard Template Library

String, conflicts in definition
X11 conflicts with libg++

System VR3, linker
use GNU linker?

System VR4, debugging
debugging on SVR4 systems

System VR4, linker

g++FAQ 41 / 41

use GNU linker?

template instantiation
undefined templates

template limitations
templates

Templates
gcc-2 + g++-1

Templates
templates

templates
version 2.6

temporaries
porting to g++

temporaries
version 2.6

Type of size_t
More size_t problems

typedef
placement new syntax

UUCP
g++ for Unix

UUNET
g++ for Unix

VAX
g++ for other platforms

VMS support
g++ for other platforms

VMS, g++/libg++ precompiled
g++ for other platforms

_G_config.h
More size_t problems

	g++FAQ
	g++FAQ.guide
	g++FAQ.guide/new stuff
	g++FAQ.guide/version 2.7
	g++FAQ.guide/version 2.6
	g++FAQ.guide/libstdc++
	g++FAQ.guide/getting g++
	g++FAQ.guide/latest versions
	g++FAQ.guide/g++ for Unix
	g++FAQ.guide/g++ for HP
	g++FAQ.guide/g++ for Solaris 2.x
	g++FAQ.guide/g++ for other platforms
	g++FAQ.guide/1.x vs 2.x versions
	g++FAQ.guide/installation
	g++FAQ.guide/gcc-2 + g++-1
	g++FAQ.guide/what else do I need?
	g++FAQ.guide/use GNU linker?
	g++FAQ.guide/Use GNU assembler?
	g++FAQ.guide/Use GNU C library?
	g++FAQ.guide/Global constructor problems
	g++FAQ.guide/Strange assembler errors
	g++FAQ.guide/Problems building libg++ on 386-486
	g++FAQ.guide/Other problems building libg++
	g++FAQ.guide/More size_t problems
	g++FAQ.guide/Rebuild libg++?
	g++FAQ.guide/User Problems
	g++FAQ.guide/2.5.x changes in overloading
	g++FAQ.guide/Demangler
	g++FAQ.guide/etags for C++
	g++FAQ.guide/static data members
	g++FAQ.guide/placement new syntax
	g++FAQ.guide/overloaded increment
	g++FAQ.guide/internal compiler error
	g++FAQ.guide/bug reports
	g++FAQ.guide/porting to g++
	g++FAQ.guide/name mangling
	g++FAQ.guide/problems linking with other libraries
	g++FAQ.guide/documentation
	g++FAQ.guide/templates
	g++FAQ.guide/undefined templates
	g++FAQ.guide/redundant templates
	g++FAQ.guide/Standard Template Library
	g++FAQ.guide/agreement with standards
	g++FAQ.guide/compiling standard libraries
	g++FAQ.guide/debugging on SVR4 systems
	g++FAQ.guide/X11 conflicts with libg++
	g++FAQ.guide/assignment to streams
	g++FAQ.guide/legalities
	g++FAQ.guide/index

